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MODELLING THE RISK OR PRICE DURATIONS IN FINANCIAL 

MARKETS: QUADRATIC ESTIMATING FUNCTIONS AND 

APPLICATIONS  
 

Abstract. In order to minimize the associated risk in applications of 

duration data in financial markets, this paper considers an estimation procedure 

based on the theory of quadratic estimating functions (QEF). We study the 

associated inference problem for autoregressive conditional duration (ACD) 

models with nonlinear specifications to justify this approach. A Monte Carlo 

simulation study is carried out to asses the performance of the QEF and show that 

the QEF estimators outperform the linear estimating functions (LEF) estimators in 

almost all cases.   

Key Words: Duration model, Quadratic Estimating Functions, Parameters, 

Estimation, Information matrix. 
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1. Introduction 

Durations between consecutive transactions play an important role in 

financial economics and decision making. Engle and Russell (1998) proposed a 

new class of duration model called autoregressive conditional duration (ACD) for 

modelling irregularly spaced duration data. However, many studies show that 

linear specifications and monotonic functions are too restrictive and hence several 
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modifications for the ACD class have been proposed.  For example:  Bauwens and 

Giot (2000) - Logarithmic ACD (Log-ACD) models; Dufour and Engle (2000) - 

Box-Cox ACD (BCACD) and Exponential ACD (EXPACD) models;  Zhang et al. 

(2001) - Threshold ACD (TACD) models; Bauwens and Giot (2003) - asymmetric 

ACD model;  Bauwens and Veredas (2004) - stochastic conditional duration (SCD) 

model; Fernandes and Grammig (2006) - augmented autoregressive conditional 

duration (AACD) model; and Meitz and Terasvirta (2006) -  smooth-transition 

threshold (ST-) ACD model. Several good reviews on various ACD models with 

applications can be found in Pacurar (2008) and Hautsch (2012). 

The maximum likelihood and quasi maximum likelihood are widely used 

in parameter estimation of ACD models. These methods do not work well unless 

the distribution of errors completely or approximately known. Therefore, a 

semiparametric approach based on the theory of Estimating Function (EF) due to 

Godambe (1985) has been successfully applied in many financial economic time 

series models including ACD models. For example, Thavaneswaran and Peiris 

(1996), Chandra and Taniguchi (2001) and Merkouris (2007) used the linear 

estimating function (LEF) approach for estimation of nonlinear time series. Allen 

et al. (2013a, b) and Ng and Peiris (2013) have reported the use of LEF in 

estimation of ACD models. David and Turtle (2000) applied the combined EF 

approach in Autoregressive Conditional Heteroscedasticity (ARCH) models.  

The main objective of this paper is to develop a new estimation procedure 

for ACD models with nonlinear specifications based on the theory of quadratic 

estimating functions (QEF) due to Liang et al. (2011). Thavaneswaran et al. (2012) 

applied the QEF in Random Coefficient Autoregressive (RCA) models with 

Generalized Autoregressive Heteroscedasticity (GARCH) innovations and derived 

a number of interesting and elegant results. The QEF is essentially the same as 

combined estimating function proposed by David and Turtle (2000). However, the 

QEF method can be applied to any time series model. 

In this paper, we apply the theory of QEF in estimation of Log-ACD and 

BCACD models and derive their corresponding information matrices to aid 

statistical inference. The motivation for this work hails from the fact that Log-ACD 

and BCACD models are potentially more flexible and less restriction on 

parameters than in LINACD (linear ACD) models. See for example, Bauwens and 

Giot (2000, 2003), Bauwens et al. (2004), Bauwens et al. (2008) and Allen et al. 

(2008, 2009) for related discussions. 

The remainder of this paper is organized as follows. Section 2 reports basic 

results of the class of LEF and reviews the theory of optimal QEF and the Section 

3 provides the optimal QEF and the corresponding information matrices  for Log-

ACD models and BCACD models. The Section 4 gives simulation results to verify 

the corresponding theoretical results. Finally, we give the some concluding 

remarks in Section 5.  
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2. Basic Results 

2.1 Notation 

 Suppose that },,,{ 21 nxxx   is a discrete valued stochastic process and we 

are interested in fitting a suitable model for this sample of size n . Let   be the 

class of probability distributions F  on 
n  and )(Fθθ  , F  be a vector of 

real parameters.  

Let )(,1  FiE be the conditional expectation holding the first 1i  values 

121 ,,, ixxx   fixed. For simplicity, let  )()( 1,1   ii EE F and let )()(  EEF . 

Let )(ih  be a real valued function of ixxx ,,, 21   and θ  such that 

                         0hF  )]([,1 iiE , ( ni ,,2,1  , F )                                      (1) 

 and  

                          ,))()(( '
0hh  jiE )( ji  .                                                             (2) 

 Suppose that );( θxg  is a real valued function of the random variate 

},,,{ 21 nxxxx   and the parameter θ , satisfying some regularity conditions 

(see e.g. Godambe (1985)). Then the function );( θxg  with 0θxg )];([E  is called 

a regular unbiased estimating function. Among all regular unbiased estimating 

functions );( θxg , );(*
θxg  is said to be optimum if 
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is minimized for all F  at );( θxg = );(*
θxg . An optimal estimate of θ  is 

obtained by solving the optimum estimating equation 0θxg );(* . 

 

 Consider the class of linear unbiased estimating functions G  formed by 

                            i
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1);( ,                (4) 

where 1ia  is a suitably chosen function of the random variates 121 ,,, ixxx   and 

the parameter θ  for all ni ,,2,1  . From Eq.(4) it is clear that, ,)];([ 0θxg E  for 

all G);( θxg . 

 Following the optimal theorem of Godambe (1985), the function );(*
θxg  

minimizing Eq.(3) is given by  
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where ][ '
1
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An optimal estimate of θ  (in the sense of Godambe (1985)) can be 

obtained by solving the equation(s) 0θxg );(* . 

 

2.2  Quadratic Estimating Functions -  QEF 

Suppose that the following conditional moments exist for the stochastic 

process  nixi ,,2,1,  : 
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where 1iF  is the information set  121 ,,, xxx ii  . We further assume that the 

skewness )(θi and the excess kurtosis )(θi of the standardized variable ix  do not 

contain any additional parameter. In order to estimate the parameter θ  based on 

the observations nxxx ,,, 21  , we consider the following two classes of 

martingale differences: 

   nixm iii ,,2,1),()(  θθ   , and   nims iii ,,2,1),()()( 22  θθθ  .  

Define the following notation for convenience and for later reference: 
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Now we state the following for the optimal estimating functions based on the 

above martingale differences. 
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(ii) The corresponding information associated with )(*
θMg  and )(*
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respectively. 

 

Now we state the following theorem due to Liang et al. (2011): 

 

Theorem 1: Suppose that  ix  is a stochastic process with finite 4th order moments. 

The corresponding QEF has the form  
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An optimal estimate of θ  can be obtained by solving the equation(s) 

0θx );(*
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 Proof is given in Liang (2011), pp. 4. 
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The Section 3 considers two main applications of the previous results for Log-

ACD and BCACD models. 

 

3. Applications of the QEF 

We first consider the class of Log-ACD or known as Log-ACD ),( qp models. 

3.1 Log-ACD ),( qp Model 

Define i  as the logarithm of the conditional expectation of ix , so that:  

  ]|[ln],,,|[ln 1121   iiiiii FxExxxxE  ,                           (5) 

where 1iF  is the information set available at the )1( i th trade. Then, the Log-

ACD ),( qp  model is defined by: 

  ,i
i

i ex 
                                                                       (6) 
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where i  is a sequence of independently and identically distributed (iid) non-

negative random variable's with mean  , variance 
2
 , skewness   and excess 

kurtosis  and i  is independent of 1iF . There are no positivity restrictions 

required on the parameters  , j and k  in i , since 0ie


 guarantees 0ix . 

Analytical expressions for some moments of Log-ACD ),( qp  models can be found 

in Bauwens et al. (2008).  
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The optimal QEF is given by: 
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It follows from Lindsay (1985) that the asymptotic variances of the resulting 

estimators are the inverse of the information matrices )(I θ
g*

Q
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g
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g
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S
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Hence, the estimator obtained from a more informative estimating equation is 

asymptotically more efficient.  

The information gain in using QEF ( );( θx
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Now we consider the BCACD or known as BCACD ),( qp  models for illustration. 
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3.2 BCACD ),( qp  model  

Let  

 ]|[],,,|[ 1121   iiiiii FxExxxxE  .                      (8) 

Then, the BCACD ),( qp  model for the variable ix  is defined as 

 iiix  ,                                        (9) 
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lnln   ,                 (10) 

where ,  , j  and k  are parameters and i  as defined before. In the paper by 

Dufour and Engle (2000), they have pointed out the following two main drawbacks 

of LINACD model (i) a constraint on the parameters to ensure non-negative 

durations, and (ii) the assumption of linearity is not appropriate in many 

applications. 

 

In order to estimate the parameter vector 

),,,,,,,,,( 2121 qp  θ  of BCACD ),( qp  models, we use the 

methods in Sections 2 and 3. We found that the results for );( θx
*
Mg , );( θx

*
Sg , 

);( θx
*
Qg , )(I θ

g
*
M

, )(I θ
g
*
S

 and )(I θ
g*

Q
are basically the same as LINACD ),( qp  

models given in Liang et al. (2011) except the term 
2
i  is not include in each 

equation. The partial derivatives of i  with respect to each parameter of 

BCACD ),( qp  models are given as 


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and  







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 for qm ,,2,1  . 

 

When i  follows a standardized weibull distribution with parameter 1 , 

this distribution reduces to an exponential distribution and gives 1 , 22  , 

2  and 6 ,  we can show that )(I)(I)(I θθθ
ggg *

S
*
M

*
Q

 .  In general, 
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when i  follows a standardized distribution, that is a distribution with unit 

expectation, then  )(I)(I θθ
gg *

M
*
Q

  and )(I)(I θθ
gg *

S
*
Q

 .   

 

3. Monte Carlo Simulation  

 

 A Monte Carlo simulation is carried out to verify the theoretical results 

given in Section 3. We compare the finite sample performance for QEF and LEF 

methods using the Log-ACD (1,1) with various popular error distributions, namely 

the standardized Exponential distribution, standardized Weibull distribution, 

standardized Generalized Gamma distribution and standardized Lognormal 

distribution.  

 Simulate a time series of length 500n  using Log-ACD (1,1) with 

20.0 , 30.01  , 40.01  , 50.01   and error distribution is 

standardized Exponential distribution.  

 Estimate the parameters of the model using QEF and LEF methods.  

 The procedure is repeated for  2000N  replications.  

 Finally, we compute the mean, bias, standard error (SE) and root mean 

squared error (RMSE) of the parameter estimates.   

 The whole procedure will be repeated for different error distributions.   

 

Table 1 shows the results for sample sizes 500n  and 2000n  with 

various error distributions. For Log-ACD (1,1) models with sample size 500n , 

the QEF method gives smaller bias for all estimates than the LEF method. As 

expected, the RMSEs for all estimates when the error distribution is exponential 

are comparable for the QEF and LEF methods. When the error distribution is not 

exponential distribution, the QEF method gives smaller estimated standard errors  

than the LEF method. As the sample size increases to 2000n , it is clear that the 

estimated standard errors have been reduced. It can be seen that the values of the 

estimated bias of the estimates are close to their true values in both the QEF and 

LEF methods.  

 

Table 1: Estimation results for the Log-ACD (1,1) models with various 

distribution obtained from sample size 500n  with 2000N  simulation runs 

( 20.0 , 30.01  , 40.01   and 50.01  ). Data are generated from various 

distributions as given in column 1. Values in parentheses are obtained from sample 

size 2000n . 
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True Distribution ̂  1̂  
1̂  

 Exponential  QEF EF QEF EF QEF EF 

Mean 
0.1994 

(0.2000) 

0.1989 

(0.2002) 

0.3001 

(0.3002) 

0.2983 

(0.3003) 

0.3905 

(0.3997) 

0.3892 

(0.3967) 

Bias 
-0.0006 

(0.0000) 

-0.0011 

(0.0002) 

0.0001 

(0.0002) 

-0.0017 

(0.0003) 

-0.0095 

(-0.0003) 

-0.0108 

(-0.0033) 

SE 
0.0223 

(0.0106) 

0.0216 

(0.0109) 

0.0343 

(0.0164) 

0.0334 

(0.0168) 

0.0790 

(0.0387) 

0.0780 

(0.0396) 

RMSE 
0.0223 

(0.0106) 

0.0216 

(0.0109) 

0.0343 

(0.0164) 

0.0334 

(0.0168) 

0.0795 

(0.0388) 

0.0788 

(0.0397) 

 

 Weibull with 0.2  QEF EF QEF EF QEF EF 

Mean 
0.2045 

(0.2005) 

0.2059 

(0.2009) 

0.3002 

(0.2999) 

0.2992 

(0.2996) 

0.3892 

(0.3988) 

0.3880 

(0.3982) 

Bias 
0.0045 

(0.0005) 

0.0059 

(0.0009) 

0.0002 

(-0.0001) 

-0.0008 

(-0.0004) 

-0.0108 

(-0.0012) 

-0.0120 

(-0.0018) 

SE 
0.0339 

(0.0159) 

0.0355 

(0.0171) 

0.0344 

(0.0168) 

0.0359 

(0.0180) 

0.0810 

(0.0385) 

0.0846 

(0.0412) 

RMSE 
0.0341 

(0.0159) 

0.0360 

(0.0171) 

0.0344 

(0.0168) 

0.0359 

(0.0180) 

0.0817 

(0.0385) 

0.0855 

(0.0412) 

 

 Weibull with 0.3  QEF EF QEF EF QEF EF 

Mean 
0.2057 

(0.2016) 

0.2088 

(0.2016) 

0.2992 

(0.3000) 

0.2983 

(0.2994) 

0.3901 

(0.3970) 

0.3862 

(0.3977) 

Bias 
0.0057 

(0.0016) 

0.0088 

(0.0016) 

-0.0008 

(0.0000) 

-0.0017 

(-0.0006) 

0.0099 

(-0.0030) 

-0.0138 

(-0.0023) 

SE 
0.0371 

(0.0179) 

0.0413 

(0.0202) 

0.0337 

(0.0166) 

0.0361 

(0.0186) 

0.0781 

(0.0378) 

0.0851 

(0.0430) 

RMSE 
0.0375 

(0.0180) 

0.0422 

(0.0202) 

0.0337 

(0.0166) 

0.0361 

(0.0186) 

0.0787 

(0.0379) 

0.0862 

(0.0431) 

 

G.Gamma 

with 0.4 , 0.3  
QEF EF QEF EF QEF EF 

Mean 
0.2112 

(0.2078) 

0.2122 

(02075) 

0.2990 

(0.3022) 

0.2991 

(0.3022) 

0.3835 

(0.3858) 

0.3821 

(0.3856) 

Bias 
0.0112 

(0.0078) 

0.0122 

(0.0075) 

-0.0010 

(0.0022) 

-0.0009 

(0.0022) 

-0.0165 

(-0.0142) 

-0.0179 

(-0.0144) 

SE 
0.0487 

(0.0237) 

0.0507 

(0.0247) 

0.0398 

(0.0203) 

0.0419 

(0.0214) 

0.0931 

(0.0460) 

0.0973 

(0.0484) 

RMSE 
0.0500 

(0.0249) 

0.0521 

(0.0258) 

0.0398 

(0.0204) 

0.0419 

(0.0215) 

0.0945 

(0.0482) 

0.0989 

(0.0503) 
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Lognormal 

With 4.02   
QEF EF QEF EF QEF EF 

Mean 
0.2071 

(0.2019) 

0.2082 

(0.2016) 

0.2985 

(0.2996) 

0.2980 

(0.2997) 

0.3854 

(0.3960) 

0.3824 

(0.3963) 

Bias 
0.0071 

(0.0019) 

0.0082 

(0.0016) 

-0.0015 

(-0.0004) 

-0.0020 

(-0.0003) 

-0.0146 

(-0.0040) 

-0.0176 

(-0.0037) 

SE 
0.0434 

(0.0207) 

0.0468 

(0.0220) 

0.0441 

(0.0226) 

0.0479 

(0.0237) 

0.1066 

(0.0523) 

0.1158 

(0.0551) 

RMSE 
0.0440 

(0.0208) 

0.0475 

(0.0220) 

0.0441 

(0.0226) 

0.0480 

(0.0237) 

0.1076 

(0.0524) 

0.1171 

(0.0552) 

 

 

 

Figures 1 to 3 show the histograms of parameter estimates )ˆ,ˆ,ˆ(ˆ
11 θ  obtained 

by QEF method for Log-ACD (1,1) model when the true distribution follows 

standardized weibull distribution (with 0.3 ) with sample size of 500n . 

These histograms show that )ˆ,ˆ,ˆ(ˆ
11 θ  follow approximate a normal 

distribution with mean θ  and variance 1
* ))(( 
θ

Qg
I .  
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Figure 1. The histogram for ̂  obtained by the QEF method when the true 

distribution follows standardized weibull distribution with 0.3  

( )2000,500,2.0  Nn . 

 

 

 
Figure 2. The histogram for 1̂  obtained by the QEF method when the true 

distribution follows standardized weibull distribution with 0.3  

( )2000,500,3.01  Nn . 
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Figure 3. The histogram for 1̂  obtained by the QEF method when the true 

distribution follows standardized weibull distribution with 0.3  

( )2000,500,4.0ˆ
1  Nn . 

 

5. Conclusion 

In this paper, we have used semiparamteric approaches based on QEF and 

LEF for the classes of Log-ACD and BCACD models. The properties of these 

proposed estimators have been investigated. Theoretical results of the QEF 

estimates have been used to develop inferential results of the corresponding 

estimators. Based on a large simulation study, we have shown that the QEF have 

smaller standard errors than those of the LEF and the distribution of the estimates 

is approximately normal. Thus, the QEF estimates are more reliable than those of 

the LEF and, hence, useful in modelling and forecasting of duration data at 

minimum risk. 
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